Skip to content

Born's Classifier SQL

from bornrule.sql import BornClassifierSQL

Warning

This SQL implementation is in beta release. It is compatible with SQLite v3.24.0+ and PostgreSQL 14. Previous versions of PostgreSQL may also work, but they have not been tested.

SQL implementation of Born's Classifier

This class is compatible with SQLite and PostgreSQL. Data items are to be passed as list of dictionaries in the format [{feature: value, ...}, ...]. This classifier is suitable for classification with non-negative feature values. The values are treated as unnormalized probability distributions.

Parameters:

Name Type Description Default
id str

The model id.

'id'
engine Engine or str

SQLAlchemy engine or connection string to connect to the database.

'sqlite:///'
type_feature TraversibleType

SQLAlchemy type of features.

String
type_class TraversibleType

SQLAlchemy type of classes.

Integer
field_id str

Label to use for the model ids.

'id'
field_item str

Label to use for data items.

'item'
field_feature str

Label to use for features.

'feature'
field_class str

Label to use for classes.

'class'
field_weight str

Label to use for weights.

'weight'
table_corpus str

Name of the table containing the corpus.

'corpus'
table_params str

Name of the table containing the model's hyper-parameters.

'params'
table_weights str

Name of the table containing the model's weigths.

'weights'

Attributes:

Name Type Description
db Database

Database class acting as interpreter between python and the database.

Source code in bornrule/sql/born.py
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
class BornClassifierSQL:
    """SQL implementation of Born's Classifier

    This class is compatible with SQLite and PostgreSQL.
    Data items are to be passed as list of dictionaries in the format `[{feature: value, ...}, ...]`.
    This classifier is suitable for classification with non-negative feature values.
    The values are treated as unnormalized probability distributions.

    Parameters
    ----------
    id : str
        The model id.
    engine : Engine or str
        [SQLAlchemy engine or connection string](https://docs.sqlalchemy.org/en/14/core/engines.html)
        to connect to the database.
    type_feature : TraversibleType
        [SQLAlchemy type](https://docs.sqlalchemy.org/en/14/core/type_basics.html#generic-camelcase-types)
        of features.
    type_class : TraversibleType
        [SQLAlchemy type](https://docs.sqlalchemy.org/en/14/core/type_basics.html#generic-camelcase-types)
        of classes.
    field_id : str
        Label to use for the model ids.
    field_item : str
        Label to use for data items.
    field_feature : str
        Label to use for features.
    field_class : str
        Label to use for classes.
    field_weight : str
        Label to use for weights.
    table_corpus : str
         Name of the table containing the corpus.
    table_params : str
        Name of the table containing the model's hyper-parameters.
    table_weights : str
        Name of the table containing the model's weigths.

    Attributes
    ----------
    db : Database
        [Database class](https://github.com/eguidotti/bornrule/blob/main/bornrule/sql/database.py) acting as
        interpreter between python and the database.

    """

    def __init__(self,
                 id='id',
                 engine='sqlite:///',
                 type_feature=String,
                 type_class=Integer,
                 field_id="id",
                 field_item="item",
                 field_feature="feature",
                 field_class="class",
                 field_weight="weight",
                 table_corpus="corpus",
                 table_params="params",
                 table_weights="weights"):

        if isinstance(engine, str):
            engine = create_engine(engine)

        kwargs = {
            'id': id,
            'engine': engine,
            'type_feature': type_feature,
            'type_class': type_class,
            'field_id': field_id,
            'field_item': field_item,
            'field_feature': field_feature,
            'field_class': field_class,
            'field_weight': field_weight,
            'table_params': table_params,
            'table_corpus': table_corpus,
            'table_weights': table_weights,
        }

        slug = engine.url.get_dialect().name
        if slug == 'sqlite':
            self.db = SQLite(**kwargs)
        elif slug == 'postgresql':
            self.db = PostgreSQL(**kwargs)
        else:
            raise ValueError(
                f"Backend {slug} is not implemented yet. Please open an issue at "
                f"https://github.com/eguidotti/bornrule/issues "
                f"to add support for {slug}."
            )

        self.params = None

    def get_params(self):
        """Get parameters

        Returns
        -------
        params : dict
            Model's hyper-parameters `a`, `b`, `h`.

        """
        if self.params is None:
            with self.db.connect() as con:
                self.params = self.db.read_params(con)

        return self.params.copy()

    def set_params(self, **params):
        """Set parameters

        Parameters
        ----------
        **params
             Model's hyper-parameters: `a` (>0), `b` (>=0), and `h` (>=0).

        """
        p = self.get_params()
        p.update(params)

        if p['a'] <= 0:
            raise ValueError(
                "The parameter 'a' must be strictly positive."
            )

        if p['b'] < 0:
            raise ValueError(
                "The parameter 'b' must be non-negative."
            )

        if p['h'] < 0:
            raise ValueError(
                "The parameter 'h' must be non-negative."
            )

        with self.db.connect() as con:
            with con.begin():
                self.db.check_editable(con)
                self.db.write_params(con, **p)
                self.params = p

    def fit(self, X, y, sample_weight=None):
        """Fit the classifier according to the training data X, y

        Parameters
        ----------
        X : list of dict of length n_samples
            Training data in the format `[{feature: value, ...}, ...]`.
        y : list-like of length n_samples
            List giving the target class for each sample. If a list of dict in the format `[{class: value, ...}, ...]`,
            then each dict gives the distribution of the classes for each sample (e.g., multi-labeled samples)
        sample_weight : list-like of length n_samples
            List of weights that are assigned to individual samples.
            If not provided, then each sample is given unit weight.

        Returns
        -------
        self : object
            Returns the instance itself.

        """
        self._validate(X=X, y=y, sample_weight=sample_weight)

        with self.db.connect() as con:
            with con.begin():
                self.db.check_editable(con)
                self.db.table_corpus.drop(con, checkfirst=True)

        return self.partial_fit(X, y, sample_weight=sample_weight)

    def partial_fit(self, X, y, sample_weight=None):
        """Incremental fit on a batch of samples

        This method is expected to be called several times consecutively on different chunks of a dataset so
        as to implement out-of-core or online learning.

        Parameters
        ----------
        X : list of dict of length n_samples
            Training data in the format `[{feature: value, ...}, ...]`.
        y : list-like of length n_samples
            List giving the target class for each sample. If a list of dict in the format `[{class: value, ...}, ...]`,
            then each dict gives the distribution of the classes for each sample (e.g., multi-labeled samples)
        sample_weight : list-like of length n_samples
            List of weights that are assigned to individual samples.
            If not provided, then each sample is given unit weight.

        Returns
        -------
        self : object
            Returns the instance itself.

        """
        self._validate(X=X, y=y, sample_weight=sample_weight)

        with self.db.connect() as con:
            with con.begin():
                self.db.check_editable(con)
                self.db.partial_fit(con, X=X, y=y, sample_weight=sample_weight)

        return self

    def predict(self, X):
        """Perform classification on the test data X

        Parameters
        ----------
        X : list of dict of length n_samples
            Test data in the format `[{feature: value, ...}, ...]`.

        Returns
        -------
        y : list of length n_samples
            Predicted target classes for `X`.

        """
        self._validate(X=X)

        with self.db.connect() as con:
            self.db.check_fitted(con)
            classes = self.db.predict(con, X=X)

        classes = dict(zip(classes[self.db.n], classes[self.db.k]))
        classes = [classes[i] if i in classes else None for i in range(len(X))]

        return classes

    def predict_proba(self, X):
        """Return probability estimates for the test data X

        Parameters
        ----------
        X : list of dict of length n_samples
            Test data in the format `[{feature: value, ...}, ...]`.

        Returns
        -------
        y : DataFrame of shape (n_samples, n_classes)
            Returns the probability of the samples for each class in the model.

        """
        self._validate(X=X)

        with self.db.connect() as con:
            self.db.check_fitted(con)
            proba = self.db.predict_proba(con, X=X)

        proba = self._pivot(proba, index=self.db.n, columns=self.db.k, values=self.db.w)
        proba = proba.reindex(range(len(X))).sparse.to_dense()

        return proba

    def explain(self, X=None, sample_weight=None):
        r"""Global and local explanation

        For each test vector $`x`$, the $`a`$-th power of the unnormalized probability for the $`k`$-th class is
        given by the matrix product:

        ```math
        u_k^a = \sum_j W_{jk}x_j^a
        ```
        where $`W`$ is a matrix of non-negative weights that generally depends on the model's
        hyper-parameters ($`a`$, $`b`$, $`h`$). The classification probabilities are obtained by
        normalizing $`u`$ such that it sums up to $`1`$.

        This method returns global or local feature importance weights, depending on `X`:

        - When `X` is not provided, this method returns the global weights $`W`$.

        - When `X` is a single sample,
        this method returns a matrix of entries $`(j,k)`$ where each entry is given by $`W_{jk}x_j^a`$.

        - When `X` contains multiple samples,
        then the values above are computed for each sample and this method returns their weighted sum.
        By default, each sample is given unit weight.

        Parameters
        ----------
        X : list of dict of length n_samples
            Test data in the format `[{feature: value, ...}, ...]`.
            If not provided, then global weights are returned.
        sample_weight : list-like of length n_samples
            List of weights that are assigned to individual samples.
            If not provided, then each sample is given unit weight.

        Returns
        -------
        E : DataFrame of shape (n_features, n_classes)
            Returns the feature importance for each class in the model.

        """
        if X is not None:
            self._validate(X=X, sample_weight=sample_weight)
            norm = [sum(v for k, v in x.items()) for x in X]
            if sample_weight is None:
                X = [{k: v / n for k, v in x.items()} for x, n in zip(X, norm) if n > 0]
            else:
                p = 1. / self.get_params()['a']
                X = [{k: pow(w, p) * v / n for k, v in x.items()} for x, n, w in zip(X, norm, sample_weight) if n > 0]

        with self.db.connect() as con:
            self.db.check_fitted(con)
            W = self.db.explain(con, X=X)

        return self._pivot(W, index=self.db.j, columns=self.db.k, values=self.db.w)

    def deploy(self, deep=False):
        """Deploy the instance

        Generate and store the weights that are used for prediction to speed up inference time.
        A deployed instance cannot be modified. To update a deployed instance, undeploy it first.

        Parameters
        ----------
        deep : bool
            Whether the corpus is dropped. Saves space but makes impossible to update the model.

        """
        with self.db.connect() as con:
            with con.begin():
                self.db.deploy(con, deep=deep)

    def undeploy(self, deep=False):
        """Undeploy the instance

        Drop the weights that are used for prediction. Weights will be recomputed each time on-the-fly.
        Useful for development, testing, and incremental fit.

        Parameters
        ----------
        deep : bool
            Whether the corpus and parameters are also dropped.
            If `True`, the model is fully removed from the database.

        """
        with self.db.connect() as con:
            with con.begin():
                self.db.undeploy(con, deep=deep)

        if deep:
            self.params = None

    def is_fitted(self):
        """Is fitted?

        Checks whether the instance is fitted.

        Returns
        -------
        is : bool
            Returns `True` if the instance is fitted, `False` otherwise.

        """
        with self.db.connect() as con:
            return self.db.is_fitted(con)

    def is_deployed(self):
        """Is deployed?

        Checks whether the instance is deployed.

        Returns
        -------
        is : bool
            Returns `True` if the instance is deployed, `False` otherwise.

        """
        with self.db.connect() as con:
            return self.db.is_deployed(con)

    @staticmethod
    def _validate(X, y="no_validation", sample_weight=None):
        """Input validation"""

        only_X = isinstance(y, str) and y == "no_validation"

        if not isinstance(X, list):
            raise ValueError(
                "X must be a list of dict in the form [{feature: value, ...}, ...]"
            )

        for i, x in enumerate(X):
            if not isinstance(x, dict):
                raise ValueError(
                    f"Element {i} of X is not a dict"
                )

            for _, value in x.items():
                if value < 0:
                    raise ValueError(
                        f"Element {i} of X contains negative values"
                    )

        if sample_weight is not None:
            if len(X) != len(sample_weight):
                raise ValueError(
                    "Dimension mismatch. X and sample_weight must have the same length"
                )

            for i, value in enumerate(sample_weight):
                if value < 0:
                    raise ValueError(
                        f"Element {i} of sample_weight contains negative values"
                    )

        if not only_X:
            if len(X) != len(y):
                raise ValueError(
                    "Dimension mismatch. X and y must have the same length"
                )

    @staticmethod
    def _pivot(df, index, columns, values):
        """Pivot table"""

        df[values] = df[values].astype(pd.SparseDtype(float))
        df = df.pivot(index=index, columns=columns, values=values)
        df = df.astype(pd.SparseDtype(float, fill_value=0))

        df.rename_axis(None, axis=0, inplace=True)
        df.rename_axis(None, axis=1, inplace=True)

        return df

get_params()

Get parameters

Returns:

Name Type Description
params dict

Model's hyper-parameters a, b, h.

Source code in bornrule/sql/born.py
def get_params(self):
    """Get parameters

    Returns
    -------
    params : dict
        Model's hyper-parameters `a`, `b`, `h`.

    """
    if self.params is None:
        with self.db.connect() as con:
            self.params = self.db.read_params(con)

    return self.params.copy()

set_params(**params)

Set parameters

Parameters:

Name Type Description Default
**params

Model's hyper-parameters: a (>0), b (>=0), and h (>=0).

{}
Source code in bornrule/sql/born.py
def set_params(self, **params):
    """Set parameters

    Parameters
    ----------
    **params
         Model's hyper-parameters: `a` (>0), `b` (>=0), and `h` (>=0).

    """
    p = self.get_params()
    p.update(params)

    if p['a'] <= 0:
        raise ValueError(
            "The parameter 'a' must be strictly positive."
        )

    if p['b'] < 0:
        raise ValueError(
            "The parameter 'b' must be non-negative."
        )

    if p['h'] < 0:
        raise ValueError(
            "The parameter 'h' must be non-negative."
        )

    with self.db.connect() as con:
        with con.begin():
            self.db.check_editable(con)
            self.db.write_params(con, **p)
            self.params = p

fit(X, y, sample_weight=None)

Fit the classifier according to the training data X, y

Parameters:

Name Type Description Default
X list of dict of length n_samples

Training data in the format [{feature: value, ...}, ...].

required
y list-like of length n_samples

List giving the target class for each sample. If a list of dict in the format [{class: value, ...}, ...], then each dict gives the distribution of the classes for each sample (e.g., multi-labeled samples)

required
sample_weight list-like of length n_samples

List of weights that are assigned to individual samples. If not provided, then each sample is given unit weight.

None

Returns:

Name Type Description
self object

Returns the instance itself.

Source code in bornrule/sql/born.py
def fit(self, X, y, sample_weight=None):
    """Fit the classifier according to the training data X, y

    Parameters
    ----------
    X : list of dict of length n_samples
        Training data in the format `[{feature: value, ...}, ...]`.
    y : list-like of length n_samples
        List giving the target class for each sample. If a list of dict in the format `[{class: value, ...}, ...]`,
        then each dict gives the distribution of the classes for each sample (e.g., multi-labeled samples)
    sample_weight : list-like of length n_samples
        List of weights that are assigned to individual samples.
        If not provided, then each sample is given unit weight.

    Returns
    -------
    self : object
        Returns the instance itself.

    """
    self._validate(X=X, y=y, sample_weight=sample_weight)

    with self.db.connect() as con:
        with con.begin():
            self.db.check_editable(con)
            self.db.table_corpus.drop(con, checkfirst=True)

    return self.partial_fit(X, y, sample_weight=sample_weight)

partial_fit(X, y, sample_weight=None)

Incremental fit on a batch of samples

This method is expected to be called several times consecutively on different chunks of a dataset so as to implement out-of-core or online learning.

Parameters:

Name Type Description Default
X list of dict of length n_samples

Training data in the format [{feature: value, ...}, ...].

required
y list-like of length n_samples

List giving the target class for each sample. If a list of dict in the format [{class: value, ...}, ...], then each dict gives the distribution of the classes for each sample (e.g., multi-labeled samples)

required
sample_weight list-like of length n_samples

List of weights that are assigned to individual samples. If not provided, then each sample is given unit weight.

None

Returns:

Name Type Description
self object

Returns the instance itself.

Source code in bornrule/sql/born.py
def partial_fit(self, X, y, sample_weight=None):
    """Incremental fit on a batch of samples

    This method is expected to be called several times consecutively on different chunks of a dataset so
    as to implement out-of-core or online learning.

    Parameters
    ----------
    X : list of dict of length n_samples
        Training data in the format `[{feature: value, ...}, ...]`.
    y : list-like of length n_samples
        List giving the target class for each sample. If a list of dict in the format `[{class: value, ...}, ...]`,
        then each dict gives the distribution of the classes for each sample (e.g., multi-labeled samples)
    sample_weight : list-like of length n_samples
        List of weights that are assigned to individual samples.
        If not provided, then each sample is given unit weight.

    Returns
    -------
    self : object
        Returns the instance itself.

    """
    self._validate(X=X, y=y, sample_weight=sample_weight)

    with self.db.connect() as con:
        with con.begin():
            self.db.check_editable(con)
            self.db.partial_fit(con, X=X, y=y, sample_weight=sample_weight)

    return self

predict(X)

Perform classification on the test data X

Parameters:

Name Type Description Default
X list of dict of length n_samples

Test data in the format [{feature: value, ...}, ...].

required

Returns:

Name Type Description
y list of length n_samples

Predicted target classes for X.

Source code in bornrule/sql/born.py
def predict(self, X):
    """Perform classification on the test data X

    Parameters
    ----------
    X : list of dict of length n_samples
        Test data in the format `[{feature: value, ...}, ...]`.

    Returns
    -------
    y : list of length n_samples
        Predicted target classes for `X`.

    """
    self._validate(X=X)

    with self.db.connect() as con:
        self.db.check_fitted(con)
        classes = self.db.predict(con, X=X)

    classes = dict(zip(classes[self.db.n], classes[self.db.k]))
    classes = [classes[i] if i in classes else None for i in range(len(X))]

    return classes

predict_proba(X)

Return probability estimates for the test data X

Parameters:

Name Type Description Default
X list of dict of length n_samples

Test data in the format [{feature: value, ...}, ...].

required

Returns:

Name Type Description
y DataFrame of shape (n_samples, n_classes)

Returns the probability of the samples for each class in the model.

Source code in bornrule/sql/born.py
def predict_proba(self, X):
    """Return probability estimates for the test data X

    Parameters
    ----------
    X : list of dict of length n_samples
        Test data in the format `[{feature: value, ...}, ...]`.

    Returns
    -------
    y : DataFrame of shape (n_samples, n_classes)
        Returns the probability of the samples for each class in the model.

    """
    self._validate(X=X)

    with self.db.connect() as con:
        self.db.check_fitted(con)
        proba = self.db.predict_proba(con, X=X)

    proba = self._pivot(proba, index=self.db.n, columns=self.db.k, values=self.db.w)
    proba = proba.reindex(range(len(X))).sparse.to_dense()

    return proba

explain(X=None, sample_weight=None)

Global and local explanation

For each test vector xx, the aa-th power of the unnormalized probability for the kk-th class is given by the matrix product:

uka=jWjkxja u_k^a = \sum_j W_{jk}x_j^a

where WW is a matrix of non-negative weights that generally depends on the model's hyper-parameters (aa, bb, hh). The classification probabilities are obtained by normalizing uu such that it sums up to 11.

This method returns global or local feature importance weights, depending on X:

  • When X is not provided, this method returns the global weights WW.

  • When X is a single sample, this method returns a matrix of entries (j,k)(j,k) where each entry is given by WjkxjaW_{jk}x_j^a.

  • When X contains multiple samples, then the values above are computed for each sample and this method returns their weighted sum. By default, each sample is given unit weight.

Parameters:

Name Type Description Default
X list of dict of length n_samples

Test data in the format [{feature: value, ...}, ...]. If not provided, then global weights are returned.

None
sample_weight list-like of length n_samples

List of weights that are assigned to individual samples. If not provided, then each sample is given unit weight.

None

Returns:

Name Type Description
E DataFrame of shape (n_features, n_classes)

Returns the feature importance for each class in the model.

Source code in bornrule/sql/born.py
def explain(self, X=None, sample_weight=None):
    r"""Global and local explanation

    For each test vector $`x`$, the $`a`$-th power of the unnormalized probability for the $`k`$-th class is
    given by the matrix product:

    ```math
    u_k^a = \sum_j W_{jk}x_j^a
    ```
    where $`W`$ is a matrix of non-negative weights that generally depends on the model's
    hyper-parameters ($`a`$, $`b`$, $`h`$). The classification probabilities are obtained by
    normalizing $`u`$ such that it sums up to $`1`$.

    This method returns global or local feature importance weights, depending on `X`:

    - When `X` is not provided, this method returns the global weights $`W`$.

    - When `X` is a single sample,
    this method returns a matrix of entries $`(j,k)`$ where each entry is given by $`W_{jk}x_j^a`$.

    - When `X` contains multiple samples,
    then the values above are computed for each sample and this method returns their weighted sum.
    By default, each sample is given unit weight.

    Parameters
    ----------
    X : list of dict of length n_samples
        Test data in the format `[{feature: value, ...}, ...]`.
        If not provided, then global weights are returned.
    sample_weight : list-like of length n_samples
        List of weights that are assigned to individual samples.
        If not provided, then each sample is given unit weight.

    Returns
    -------
    E : DataFrame of shape (n_features, n_classes)
        Returns the feature importance for each class in the model.

    """
    if X is not None:
        self._validate(X=X, sample_weight=sample_weight)
        norm = [sum(v for k, v in x.items()) for x in X]
        if sample_weight is None:
            X = [{k: v / n for k, v in x.items()} for x, n in zip(X, norm) if n > 0]
        else:
            p = 1. / self.get_params()['a']
            X = [{k: pow(w, p) * v / n for k, v in x.items()} for x, n, w in zip(X, norm, sample_weight) if n > 0]

    with self.db.connect() as con:
        self.db.check_fitted(con)
        W = self.db.explain(con, X=X)

    return self._pivot(W, index=self.db.j, columns=self.db.k, values=self.db.w)

deploy(deep=False)

Deploy the instance

Generate and store the weights that are used for prediction to speed up inference time. A deployed instance cannot be modified. To update a deployed instance, undeploy it first.

Parameters:

Name Type Description Default
deep bool

Whether the corpus is dropped. Saves space but makes impossible to update the model.

False
Source code in bornrule/sql/born.py
def deploy(self, deep=False):
    """Deploy the instance

    Generate and store the weights that are used for prediction to speed up inference time.
    A deployed instance cannot be modified. To update a deployed instance, undeploy it first.

    Parameters
    ----------
    deep : bool
        Whether the corpus is dropped. Saves space but makes impossible to update the model.

    """
    with self.db.connect() as con:
        with con.begin():
            self.db.deploy(con, deep=deep)

undeploy(deep=False)

Undeploy the instance

Drop the weights that are used for prediction. Weights will be recomputed each time on-the-fly. Useful for development, testing, and incremental fit.

Parameters:

Name Type Description Default
deep bool

Whether the corpus and parameters are also dropped. If True, the model is fully removed from the database.

False
Source code in bornrule/sql/born.py
def undeploy(self, deep=False):
    """Undeploy the instance

    Drop the weights that are used for prediction. Weights will be recomputed each time on-the-fly.
    Useful for development, testing, and incremental fit.

    Parameters
    ----------
    deep : bool
        Whether the corpus and parameters are also dropped.
        If `True`, the model is fully removed from the database.

    """
    with self.db.connect() as con:
        with con.begin():
            self.db.undeploy(con, deep=deep)

    if deep:
        self.params = None

is_fitted()

Is fitted?

Checks whether the instance is fitted.

Returns:

Name Type Description
is bool

Returns True if the instance is fitted, False otherwise.

Source code in bornrule/sql/born.py
def is_fitted(self):
    """Is fitted?

    Checks whether the instance is fitted.

    Returns
    -------
    is : bool
        Returns `True` if the instance is fitted, `False` otherwise.

    """
    with self.db.connect() as con:
        return self.db.is_fitted(con)

is_deployed()

Is deployed?

Checks whether the instance is deployed.

Returns:

Name Type Description
is bool

Returns True if the instance is deployed, False otherwise.

Source code in bornrule/sql/born.py
def is_deployed(self):
    """Is deployed?

    Checks whether the instance is deployed.

    Returns
    -------
    is : bool
        Returns `True` if the instance is deployed, `False` otherwise.

    """
    with self.db.connect() as con:
        return self.db.is_deployed(con)