Born's Classifier SQL
Warning
This SQL implementation is in beta release.
It is compatible with SQLite v3.24.0+
and PostgreSQL 14
.
Previous versions of PostgreSQL
may also work, but they have not been tested.
SQL implementation of Born's Classifier
This class is compatible with SQLite and PostgreSQL. Data items are to be passed as list of
dictionaries in the format [{feature: value, ...}, ...]
or directly as SQL queries.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
id |
str
|
The model id. |
'model'
|
engine |
Engine or str
|
SQLAlchemy engine or connection string to connect to the database. |
'sqlite:///'
|
configs |
Database configurations structured as follows. { 'class': (table, item, field) or 'SELECT item, class, weight', 'features': [ (table, item, field) or 'SELECT item, feature, weight FROM ...', (table, item, field) or 'SELECT item, feature, weight FROM ...', ... ] } |
None
|
|
type_feature |
TraversibleType
|
SQLAlchemy type of features. |
String
|
type_class |
TraversibleType
|
SQLAlchemy type of classes. |
Integer
|
field_id |
str
|
Label to use for the model ids. |
'id'
|
field_item |
str
|
Label to use for data items. |
'item'
|
field_feature |
str
|
Label to use for features. |
'feature'
|
field_class |
str
|
Label to use for classes. |
'class'
|
field_weight |
str
|
Label to use for weights. |
'weight'
|
table_corpus |
str
|
Name of the table containing the corpus. |
'corpus'
|
table_params |
str
|
Name of the table containing the model's hyper-parameters. |
'params'
|
table_weights |
str
|
Name of the table containing the model's weigths. |
'weights'
|
Attributes:
Name | Type | Description |
---|---|---|
db |
Database
|
Database class acting as interpreter between python and the database. |
Source code in bornrule/sql/born.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
|
get_params()
Get parameters
Returns:
Name | Type | Description |
---|---|---|
params |
dict
|
Model's hyper-parameters |
Source code in bornrule/sql/born.py
set_params(**params)
Set parameters
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**params |
Model's hyper-parameters: |
{}
|
Source code in bornrule/sql/born.py
fit(X, y=None, sample_weight=None)
Fit the classifier according to the training data X, y
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
list of dict of length n_samples, or str
|
Training data in the format |
required |
y |
list-like of length n_samples
|
List giving the target class for each sample. If a list of dict in the format |
None
|
sample_weight |
list-like of length n_samples, or str
|
List of weights that are assigned to individual samples, or an SQL query in the
format |
None
|
Returns:
Name | Type | Description |
---|---|---|
self |
object
|
Returns the instance itself. |
Source code in bornrule/sql/born.py
partial_fit(X, y=None, sample_weight=None)
Incremental fit on a batch of samples
This method is expected to be called several times consecutively on different chunks of a dataset so as to implement out-of-core or online learning.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
list of dict of length n_samples, or str
|
Training data in the format |
required |
y |
list-like of length n_samples
|
List giving the target class for each sample. If a list of dict in the format |
None
|
sample_weight |
list-like of length n_samples, or str
|
List of weights that are assigned to individual samples, or an SQL query in the
format |
None
|
Returns:
Name | Type | Description |
---|---|---|
self |
object
|
Returns the instance itself. |
Source code in bornrule/sql/born.py
predict(X)
Perform classification on the test data X
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
list of dict of length n_samples, or str
|
Test data in the format |
required |
Returns:
Name | Type | Description |
---|---|---|
y |
Series of shape (n_samples, )
|
Predicted target classes for |
Source code in bornrule/sql/born.py
predict_proba(X)
Return probability estimates for the test data X
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
list of dict of length n_samples
|
Test data in the format |
required |
Returns:
Name | Type | Description |
---|---|---|
y |
DataFrame of shape (n_samples, n_classes)
|
Returns the probability of the samples for each class in the model. |
Source code in bornrule/sql/born.py
explain(X=None, sample_weight=None)
Compute global and local explanation
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
list of dict of length n_samples
|
Test data in the format |
None
|
sample_weight |
list-like of length n_samples, or str
|
List of weights that are assigned to individual samples, or an SQL query in the
format |
None
|
Returns:
Name | Type | Description |
---|---|---|
df |
DataFrame of shape (n_features, n_classes)
|
Returns the feature importance for each class in the model. |
Source code in bornrule/sql/born.py
deploy(deep=False, overwrite=False)
Deploy the instance
Generate and store the weights that are used for prediction to speed up inference time.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deep |
bool
|
Whether the corpus is dropped. |
False
|
overwrite |
bool
|
Whether to overwrite the weights if the instance is already deployed. |
False
|
Source code in bornrule/sql/born.py
undeploy(deep=False)
Undeploy the instance
Drop the weights that are used for prediction.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deep |
bool
|
Whether the corpus and parameters are also dropped.
If |
False
|
Source code in bornrule/sql/born.py
is_fitted()
Is fitted?
Checks whether the instance is fitted.
Returns:
Name | Type | Description |
---|---|---|
is |
bool
|
Returns |
Source code in bornrule/sql/born.py
is_deployed()
Is deployed?
Checks whether the instance is deployed.
Returns:
Name | Type | Description |
---|---|---|
is |
bool
|
Returns |